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Abstract

An image search for “clown sh” yields many photos of
clown sh, each of a different individual of a differeBD
shape in a different pose. Yet, to the human observer, this
set of images contains enough information to infer the un-
derlying 3D deformable object class. Our goal is to re-
cover such a deformable object class model directly from
unordered images. . Figure 1. Deformable shape models witbases for the “lily' and

For Clalss_es Wher'e feature-point CorreSpondenc_es can be*clown sh' are recovered and tted to some examples.
found, this is a straightforward extension of non-rigid fac
torization, yielding a set 08D basis shapes to explain the
2D data. However, when each image is of a different ob- from some common distribution. Such classes occur of-
ject instance, surface texture is generally unigue to eachten in natureg.g.the class of oak leaves, or lily petals, or
individual, and does not give rise to usable image point dolphins. When each photo in the input collection is of a
correspondences. We overcome this sparsity using curveifferent instanceof the object class, as might be returned
correspondences (crease-edge silhouettes or class-speci by a (e.g. Flickr) query on the tag “oak leaf”, each photo
internal texture edges). corresponds to a different 3D shape.

Even rigid contour reconstruction is dif cult due to the In this paper, we address the novel problem of 3D ob-
lack of reliable correspondences. We incorporate corre- jectclassreconstruction from multiple, unordered images.
spondence variation into the optimization, thereby extend Fig. 1 shows images from two classes: “lily” and “clown-
ing contour-based reconstruction techniques to deformabl sh”, with the 3D models recovered from each by our
object modelling. The notion of correspondence is extendedmethod.  Speci cally, we focus on a subset of such cat-
to include mappings betwe@D image curves and corre-  egories, namely objects for which a wireframe descrip-
sponding parts of the desire®D object surface. Combined tion is appropriate. In the absence of reliable point cor-
with class-speci ¢ priors, our method enables effective de respondences, we exploit class-speci ¢ curve correspon-
formable class reconstruction from unordered images, de-dences. We extend existing optimization methods to in-
spite signi cant occlusion and the scarcity of sharg2® corporate variable correspondences and partial occlusion
image features. while matching such curves. We rst recapitulate existing

work in 8 2 before expanding on the problem irB§

1. Introduction 2. Related work

Community photograph collections are a rich source of Related researc_h COMprises several S”‘."‘”“S: non-rigid
structure from motion, rigid 3D reconstruction from con-

information about the world, particularly when many dif- ¢ dth dell fsh | . i
ferent photos of the same subject are captured over time ours, and the modelling of shape classes, using active

and space. The Photosynth systeni shows how several shape models.
views of the same rigid structure (e.g. “Pantheon”, “Half-
dome”) can be interrelated via the common coordinate sys-
tem of a 3D reconstruction. We would like to extend the  The recovery of non-rigid structure from motion has
subject of such reconstructions beyond rigid structures tobeen an ongoing subject of researéhd, 5, 16). Common
include objectclasses sets of 3D model instances drawn to all these approaches, is the need for a set of point corre-

2.1. Non-rigid structure from point matching



spondences, or point tracks in the case of video. The 3Dcase.
shape in each view is modeled as a linear combination of  Existing work on curve matching uses the constraints as-
basis shapesienotedB;..x . The shape in each input view sociated with rigid-body assumption to constrain the match
is given by linear combination coef cients, possibly with ing. Schmid and Zissermany showed how the use of 2-
associated transformation parame®rE. A set ofP point and 3-view matching tensors allows correspondence trans-
correspondences ovél input images is represented as a fer: a point on one curve which is not parallel to an epipolar
2P N measurement matrixwhich concatenates the 2D line, induces a point match on the corresponding curve in
pointswy, . Recovery of the unknown model parameters a second view, and constrains the local matching homogra-
etc, was initially cast as a matrix factorization problem, phy, allowing surface texture adjacent to the curve match to
but more recent work has cast it as a maximaxposteriori resolve ambiguities. Rigid curve matching in multipte 8)
(MAP) estimation of the parameters jor maximum likeli- views is addressed by Berthilssetal.[2], who introduce a
hood distribution tting [L6]. Rabaud and Belongi€ P] is a bundle adjustment strategy to allow curve correspondences
nice departure from the linear subspace model, but remaingo vary along the image curves. Kaminski and Shashja [
in a regime where features are fully in correspondence. derive constraints on algebraic curves from multiple views
These techniques are very effective in analyzing a sin- while Martinssonet al. [10] combine curve tting and re-
gle object moving non-rigidly in video. However, apply- construction for planar curves.
ing these techniques to object class learning from commu-
nity photo collections incurs a number of dif culties. Riys 3. Multiple-view reconstruction of curve fami-
obtaining correspondences automatically is dif cult with lies
out the temporal coherence of video, or the matching ten-
sors of rigid-body multiple-view geometng]. Even if This paper combines several of the above themes for ef-
manually-supplied matches are allowed, matches must befective recovery of deformable shape models from random
found which are consistemcrossthe object class, not just  collections of images. Higher-level features such as image
per-object. The type of surface texture found on natural based curves are used and the process of joint optimization
objects, such as oral petals and faunal pelts, tends to beover an analytic objective (using bundle adjustmendg)
unique to each object instance. This means that corresponincludes the search for correspondences (in addition to the
dences between different instances, as required in this pabasis shapes, camerete). Instead of restricting ourselves
per, cannot be found. In practice, for the petal example weto 2D-2D correspondences, we also incorporate 2D-3D
use throughout this paper, perhaps two reliable point eorre correspondences, thus allowing for a large range of occlu-
spondences may be identi ed: the base and tip of the petal.sion. We exploit class-speci ¢ regularization and topalog
Bartoli et al. [1] is probably the closest prior work to  cal information for effective reconstruction on two digtin
ours, in that they augment point-based Non-Rigid Structure object classes.
from Motion (NRSfM) with curve correspondences. Their We rst de ne the problem in 8.1 The general goal
work, however, uses many more point correspondences tq83.2) and an overview of the optimization methodi&re
guide the estimation, makes strong use of the temporal con-described next. The speci ¢ objective, regularization and
straints in video, and does not deal with curve occlusions. optimization change depending on the speci ¢ application.
Variations of the basic method are applied to two classes in
2.2. Rigid structure from curve matching 8§5: “Lily” (8 5.1) and “Clown sh” (85.2. We then sum-

marize our contributions @ and discuss shortcomings and
In the absence of surface correspondences, then, h0V¥uture directions

may the problem be approached? One solution is to move
from zero-dimensional point matching to one-dimensional
curve matching. The number of matched items remains
low—ijust three to eight reliable across-class curves for ou ~ We haveN images, each a different instance of an ob-
examples—but each curve correspondence provides muclject class, and the goal is: (i) to extract a deformable shape
richer information about 3D shape than a point correspon-model, (i) nd the camera projection parameters, and (iii)
dence. The dif culty with curve correspondences, however, t the shape model to each image. Each image is of a dif-
is a variant of the aperture problem: although the curve is in ferent class instance, therefore identi cation of point-co
correspondence as a whole, individual points on the curverespondences is often impossible. However, image con-
are not naturally in correspondence. Measures such as curtours of characteristic texture edges and silhouettes suc-
vature provide poor matching constraints, as curvature cancinctly capture the image-based information for the task
change drastically under projection (consider a smooth he-of building a deformable shape model. In each image
lical segment which is imaged with a cusp). Projective con- a different numbef , of unique 2D curves can be easily
cepts such as hi-tangency do not extend to the deformableextracted as illustrated in g3 (a). Each curve is rep-

3.1. Problem statement



resented analytically as a piecewise-smooth, splineebasevia a3 4 camera matrixP, = [A, j Tr] and perspec-

function! i (t);t 2 [0;1];i 2 1:::f, mapping the uni-
dimensional spline parametgr[0;1] ! R? to the image
locations ( g. 2).

We use a parametric 3D
surface representation for
the 3D shapeg,e. a map-
ping from (u;v) parame-
ter space to 3D, denoted
X (u;v).  Each image-
based 2D curve! j (t)
is also a projection of
some 3D curve on the
object surface, which is
in turn represented by
a 2D curve (u(t);v(t))
in the surface's parame-

Figure 2. Sub-pixel edgel chainster space, which we call
are represented by piecewise-the pre-image Provided

smooth spline functions; creat-these curves are not too
ing continuous contours. Far2  close in parameter space,

fli:Ugiv 2 £1:::Vgii 2 e may reparametrize so
fl:::fngit 2 [0;1] that the pre-images are
lines. Thus there is a mappingt 2 [0;1] $

line[(uni1;Vni1); (Uni2;Vni2)], between the 2D image
curve parameter and the 3D curve parameter (see)g.
In this work,!  constitutes the entire usable image infor-
mation. Thus, the sétl ,; (t)ji 2 1:::f,ggand their 3D
counterparts form the “visible” part of the object surfage i
imagen. For the 2D parametric surface de ned in the next
section, this mapping de nes the visibility of a surface-ver
tex(p; g in each image as:

_ i if(p;g) 2 line[(uni 1; Uni2) ; (Vni 1; Vii 2)]
P 0 otherwise
or, in other words: 4 is the index of the curve inimage
to which parameter-space poiit; g maps.

Surface representation: The parametric surface repre-
sentation mapping0; 17 7! R® is used to represent fully
freeform shape instances. The 3D model for ti{fe im-

age is represented on a discretized parametric grid as a

U V vertex meshX v
fl:::Ug;v 2 fl:::Vg.

= [ Xow ; Ynu 5 Znw 7 u 2
(see g.3). The model for

tive projection (x;y;z) := ( Xx=z;y=2) gives us the current
predicted projectiongy, (u; v):

X
Wow = Ay nk Bkw + Th 1)
k=1
3.2. Desiderata
The goal is to recover the unknowns =

f 1.8;Buk ;Prn g For any solution it is important
for the individual reprojections to be consistent with
information from the corresponding images. For under-
constrained problems appropriate regularization engmsa
the reconstructions(, to have desired characteristics of
class shape.g. smoothness and topology. To this end,
we will minimize a sum of reprojection erroEgp) and
regularization Esmooty in the combined objective

)

Egen = Erp+ Esmooth

3.3. Reprojection error

The projectiory| of then™ 3D modelX, must be con-
sistent with its image observations. If the corresponding i
age projectionw,,, for eachX,,, were known, the model
t could be assessed by measuring reprojection error:

X 5 X 2
kenw K° = (nwv >0) Wnw  Whoyy

njuv nuv
®3)

Fitting the model by minimizinde gen is then a straightfor-
ward bundle adjustment over= f 1.5 Bk ;PN G
However we lack point correspondences, so the closest-
point from a projected point to a image-based curve rep-
resents the “correspondence” and the modi ed reprojection
error is:

Erp=

dnuy (1) = (;?nuv P ()€ v >0) (4)
D= kapnK ©

nuv
= mitn kdnuy (t)k (6)

This small modi cation makes the optimization rather more

the 3D deformable object class follows the literature, and dif cult. Several options are available to minimiz2, and

is a linear combination of a s& of K basis shapesthe
(u;v)™ vertex in thek™ basis given byf By, of., . B

is tted to each image by a vector of shape parameters Minimizing D:

n to regleve the relevant 3D model vertices given by:
Xaw = k=1 nk:Bav. We adopt the convention that
n1 = 1; 8n, so thatB, behaves like the mean in principal

these are the topic of the next section.

In our experiments, a number of strate-
gies for minimization ofD were considered: (i) distance

transform, (ii) point-to-spline distance, and (iii) augmed

bundle adjustment. The distance transform approach main-

components analysis. The model is projected into the imagetains a distance look up table (and associated derivatives a
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Figure 3. Annotation and parametrization:
their prominent curve features. (b) Mapping between im-
age curves and parameter grid. For lilies, this is constant
f(u;v)ju 2 [0;1];v 2 f 0; 0:5; 1gg. Row 1: The gray vertices are
interpolated from the ribs post-optimization. For clowh,sthe
curves are intuitively and approximately mapped to thendyical

sh topology (also see g.2). Rows2; 3: Black vertices are the
invisible (or occluded) verticew.r.t. the image curve information

of (a) and are solved simultaneously with the coloured oNese:

The image curves are unique to each instance and identically
coloured curves correspond only along the columns and mossc
rows. (d) Cylindrical topology for sh parametrization. )(Eor
each vertex, the brightness corresponds to the number giisria

is visible in. Only two(u;v) = f(2;6); (3; 6)g are visible8N .

(e)

(&) Image and

in [6]): DTpi (x) = min ¢ kx
pli cation

! ni (t)k. This gives the sim-

min  —

nuv

( nw > 0) DTy nuv (Whuy ) : @)

Discretization is a problem on distance transforms. To in-
crease accuracy, we can discretize more nely (by a factor
of 5), but this leads to memory constraints on the number
of images we can train on. The advantage of this look-up
based approach is that it works very fast.

Because the image curves are de ned as interpolating
splines, the closest point to any query point can be ef-
ciently and reliably found using Newton-Raphson itera-
tions. If we assume each 3D point is determined by its
projections, then®) can be explicitly minimized at each
function evaluation. However, the derivatives of the func-
tion are not available in closed-form, so nite-differerme-
proximations must be used, and bundle adjustment becomes
considerably slower.

The third strategy is to augment the bundle adjustment
with NUV extra parameterts, (u; V), i.e. rewriting

min

Dgrp = min min dnyy (t) =
t ta(uv) sty (upv) nuv

nuv

dnuv (t) .
(8)

Eacht, (u; v) represents the closest curve-point to each vis-
iblewW, (u;v) and addN UV parameters (assuming all ver-
tices are visible) to the optimization to explicitly repees

the correspondences. This redundancy removes the need
for explicit closest point computations. However, it does
not greatly increase the computational load because the ad-
ditional parameters add a large sparse block (of tightly con
strained variables) to the Jacobian. In our experimengs, th
additional block does not add any report-worthy time to Ja-
cobian calculation.

3.4. Regularization

In the presence of sparse training data with occlusion and
noise, regularizers on the 3D shape are required. Kach
(also written as th&UV 1 vectorX ) must be smooth
regardless of which vertices are visible, and possess-desir
able class characteristics for plausible reconstrucfitin-
plate energies (se€.}, 18, 7]) associated with rst (ten-
sion) and second (bending energy) derivatives and their
corresponding matrix operatorG;; G,; G ; G ; Gv (each
3UV square matrix as shown irn ]]) are de ned ignoring
parametrization issues:

X
Ebending= kegendin&<2 (9)
n
P_
egending = X ;uu 2X ;uv X r>1w (10)
X 2
Etension= kepensiolk (11)
n
>
€lension = X ;u X ;\, (12)



Esmooth= Ebending™ Etension (13) 5.1. Lilies

Inthe rstclass: 'lily', the open petal surface is assumed

o 1 to be completely determined from the three “ribs” on the
Xn, (51) = 55 Xni+nj Xni o) (14)  petal surface. We call this the “Wireframe Class Model
1 (WCM). Therefore the surface is reduced to a set of ribs—

Xnw (G]) = 202 Xng+nj  2Xnij + Xni 1)j its underlying “wireframe' representation-e. u 2 [1; U]

but nowv 2 f1;2;Vg;V = 3 (for 3 petal ribs). Given
(15) the de ning ribs, the rest of the surface is interpolated as
and, X, = Gu X, ;5 jjijV for others (16) shown in gs.156. The notion of surface smoothness
(83.4) reduces to rib-based 3D curve smoothness. Com-
. . L . puting second-order rib smoothness is equivalent to using
4. Hierarchical Optimization only matrix operatorG,, on the individual ribsX , (u; v).
The horizontal G,y ) and diagonal @,,) smoothness terms
are irrelevant across the ribs and are turned off (the ries ar

timization over a sum-of-squares objective of typ®, ( not spatially next to each other on the surface, therefare ar
which can expressed as a residual vector. The Levenberg©t €xpected to be smooth horizontally and diagonally on
Marquardt algorithm is used with an analytically computed the parameter space). In addition to smoothness, vertices

Jacobian. Fig4 illustrates the main sparsity structure that N the individual ribs must be as uniformly spaced as possi-
is exploited in our experiments. We divide the matrix into ble while adhering to image-based information. The tension

its major blocks, many of which are block-structured, and €M Cu is usefulin this context. The nal
process those blocks in “tetris mode’ie_. ef ciently com- e = CuXs (17)
pute and compactly store the blocks in column-wise order bending

in a attened matrix, increasing the optimization speed and €nsion= C uXn (18)
accuracy. For under-constrained non-convex problems the ) ) )

key to a good solution is the choice of initialization. We Smoothness in the above form (especially tension) can
reduce the dependency by having an hierarchical minimiza-cé"luse tTeb ”lbs ttc_’ shrmkf t?h sm%gla:_ points. bSt?ted dast’) n
tion strategy with incremental model complexity. Relalve (2). a global optimum of the objective can be found by

. . . L settingB¢ = 0 for all k, and choosingP, to project the
reliable solutions can be found for simpler caseg/(rigid resulting point onto any point on the image cuneg.

bodyi.e. K = 1, scaled-orthographic projection). This we w,(0:0). The rst problem is reduced if point corre-

relax towards the full solution by varying from 1 to the spondences are available. In our example, the tip and
desired target, and for ea¢h, we rst estimate the newly  pase of the petal are identi able in many views, and can
introduced bases and coef cients before proceeding tg full be included as conventional point constraints. However,

Given a dataset of images and curves, computing a so
lution for the deformable object problem involves an op-

joint optimization (including correspondendss). image-based observation noise and annotation noise makes
such constraints undesirable. A weaker, but nevertheless
5. Experiments useful constraint is to encourage certain points on the

curves to be coincident in 3D. This allows for the 3D rib

For the NRSfM unknowns given by (§ 3.2), we tips to continue to be exible and optimizable, promoting
compare our variable correspondence based optimizationPetal-like appearance, removing occurrence of singylarit
min¢ « ., g Egen against NRSfM with xed correspon- without explicit constraints. For example, given the point

dences:min Egen (see £)). We examine two classes: labelling in gs. 2,3, we add the following terms to the

“lilies' and “clown sh'. Curve-based image evidence is em- optlmlze;?on:

ployed to optimize similar objectives under different s Ep = op KXn11  Xni2k? + KXn1  Xnisk?
representations, class-based priors and varying amofints o n

occlusion. Class-speci ¢ curves are identi ed by rst run- + ot KXnu1 Xnu2k®+ KXnu1  Xnusk?®  (19)

ning a sub-pixel edge detector and edgel linker, and then

manually selecting the corresponding edges. This is a rel- Combining these terms gives our primary objective:

atively quick process, requiring a few clicks per image, but

for a situation where thousands of images were to be la- E" (it tp) = Dret Eptt Ependingt Etension (20)
belled, partial automation would be desirable. While the op

timization (and our implementation) handles any projectio Observations: A collection of N = 56 “lily” (petal)
model, in the following experiments we use a 7-parameter photos were downloaded from Flickr, and manually an-
similarity transform (un-normalized quaternion and tfans  notated as described above, to produce a three-rib curve
tion). for each view. Optimizing § with xed t,(u;v) and



(a) Lily (b) Clown sh
J (for a) (NK) | B(BKP) (7N) | T(NP)
d 2P NK 6P NK 14NP 2NP
epending | 3PNK 9P NK 0 0
€tension 3PNK 9P NK 0 0
ept 12PNK 72NK 0 0
Figure 4. Jacobian structure: (a) 'Lily": the variables (for

(N =4;K =3;UV =12)) are plotted horizontally while the
terms from the residual d& "™ are vertical. The densities of the
blocks for (a) are shown in the matrix below. (b) Clown sh:-Ja
cobian for(N =4;K =3;UV =100) is on the right. Now, the
vertical blocks toD; epending (Blocks for ep; €ension removed, but
enendingS larger due to surface-based smoothness). Additiorally,
number of rows in (b) may be empty due to occluded vertices.

U 20 unit-speed samples per rib ¥ = 3 ribs) is
equivalent to a regularized version of NRSfM, and produces
rather at reconstructions (see ¢). ForN = 56 im-
ages,UV = 60 andK = 4, the number of parameters
= NK + UV K3+7N =1336. Allowing for variable cor-
respondences add#sUV = 3360 redundant variables, to-
talling to 4696 The Jacobian and its sparsity pattern can be
seenin g.4(a). The hyper-parametefrs ;  gin this op-
timization are set empirically by visual reconstructioraju

ity and requires little tuning in our experience; our WCM
produces realistic 3D models regardless of the exact valu
of these hyper-parameters (unless scaled exorbitantgs). R
sults are summed up in tableand gs. 3,5.

5.2. Clown sh

We now consider a new case: “clown sh”, adopting a
slightly different approach from the WCM ob8gL Instead,
we solve for the entirdJ V mesh as proposed irB&L
Only a part of the clown sh surface corresponding to the
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Figure 5,WCM: Row 1: Three lily images and annotations. Row
2: 3D wireframes (and interpolated petal surfaces) estichbie
our WCM method K = 4) using exible correspondences are
much more realistic. Our ribs are projected to Rbim red. Row

3: Our best results for standard NRSfM techniques, which pro-
duces mostly at petals. Note: surface colour ranges frooe b

red denoting vertex depth for visualization.

B, | B; variation | Bg variation | B, variation |
Figure 6.Lily: Modes of deformation. The bases are wireframe;
surfaces are interpolated for ease of understanding.

of each curve to its parametric locations during the anno-
tation (see g.3). This mapping only needs to be approx-
imately correct for each curve, but the collective, relativ
ordering of all mappings on the surface must be reasonably
correct. For the moment, we ignore the complex side n

observed image curves, is seen in each image. In addition tdo keep the topology simple at the current resolution. Since

curve annotation, the user initializes approximate mappin

the observed data is limited to image-based curves, object



parts corresponding to texture-less and non-silhouette re
gions are invisible to the method and considered “occluded”
in that image. The individual vertex visibilities (see 8)

are important to the optimization. Reprojection error con-
tinues as ). The clown sh is represented as a closed sur-
face mesHU = 10;V = 10) of cylindrical topology (see

g. 3). The regularization matrices are designed to incor-
porate the bending energ9)(and the topology11]. The
lily-speci c Ep (19) is removed. To deal with the whole
surface, all terms of9) are used as opposed tb7]. Then

the full objective is:

Efu“( t11; 25 thp) = Drp+ Ebending (21)
Observations: A dataset ofN = 20 images is collected
off the web and annotated as described above (also se
§ 5). The number of vertices represented by ehgh is
determined by their 3D parametric mapping. Optimizing
(21) with xed, unit-speed,, yields the NRSfM solution,
while allowing the correspondences to vary #i) extends
the method to nd variable correspondences. For= 20
images,UV = 100, andK = 4 the number of parame-
ters= NK + UVK3+ 7N = 1420. Interestingly, only
169 points of NUV = 2000 are ever visible; only2 are
seen in every image (see & (e)). Allowing for variable
correspondences adbilJV = 2000 additional redundant
variables, totalling t8420(see Jacobian in g4 (b)). Us-

ing bundle adjustment, the bases are built incrementatly an
separately for xed and variable correspondences. This re-

K NRSfM ours
Ere | RMSE | Egre | RMSE

E = EWYM Lily: N =56;P =60, =1e 2

1 12.16 | 0.4247 | 10.59 | 3.6974

2 9.22 0.3219 8.99 0.31

3 7.56 0.26 7.19 0.25

4 5.57 0.19 5.38 0.18
E=EM Clownsh: =1e4

1 4.9307| 1.5671 | 4.9307| 1.5671

2 3.4412| 1.1527 | 3.8123| 1.2632

3 2.2969| 0.8271 | 2.7730| 0.9834

Clownsh: =1l1le 1

1 5.0982| 1.6469 | 4.0107| 1.3415

2 2.8267| 0.8540 | 3.0968| 1.1058

3 1.7469| 0.5278 | 2.3942| 0.9203

Table 1. Results for the competing methods:L{ly : The WCM
method achieves a better minimum. Additionally, it optiesze-
projection error (reported per point) better too. @own sh:
Data being limited, our algorithm performs better (in terofs
function value) at low regularization and low number of kmse
(K = 1). Despite higher function values at higher K, the vi-
sual reconstructions obtained by our method are more tiegkge

g. 7.

sults in separate solutions with comparable function \&alue
as seenintablé. Atlow (le 1, weight on smoothness)
and low bases{ =1 here), variable correspondences pro-
duce improved 3D models and redug@p and E¢y. At
higher (1e4) smoothness overtakes reprojection error. Nu-
merically, NRSfM and our method produce similar results
(see tablel), though visually our results continue to look
better (see g.7).

6. Summary

We have shown how a single bundle adjustment frame-
work, built around curve features, allows a variety of 3D
reconstruction from collections of similar, but distintass
instances despite the lack of point correspondences or tem-

goral smoothness.

We rst apply our method to nd lily petal structure ap-
proximated by a rib-based wireframe. Image-curves rep-
resenting rib projections are used to jointly estimateesorr
spondences (up to a local minimum) along with the standard
NRSfM variables. All vertices of the object are observable
in a reasonably large dataset and we show signi cant im-
provement over existing techniques.

We then extend the method for “clownsh”—a
topologically-cylindrical class—from partial image cerv
based cues. While allowing for occlusion of unseen vertices
in each image, correspondences are still jointly learn wit
the rest of the variables. This is particularly interestireg
cause in each image, most vertices happen to be invisible
(g. 3); those observed are often the same vertices. The re-
sults provide a captivating teaser for how far such methods
can be pushed in the face of extreme occlusion and limited
data.

When solved separately and incrementally (as described
in § 4), the two competing methods—the xed correspon-
dence NRSfM and our variable correspondence based ap-
proach (usingge "™ E—can land in different local op-
tima of the complex objective function. Our optimiza-
tion generally leads to more plausible optima than NRSfM,
when both are initialized identically (barring in ection
points). We lack ground truth to train and test these al-
gorithms. Therefore, observation and annotation noise, in
herent ambiguity in solutions, initialization issues anae
in model assumptions affect the exact function value at the
local optimum. Therefore, in addition to objective value,
visual plausibility is an important benchmark in evalugtin
the nal reconstructions.

In this paper, we have approached 3D deformable class
reconstruction from a fresh perspective. We have not pro-
vided a closed-form, or factorization-based, algorithnort, b
rather used a carefully controlled bundle adjustment to
prove the concept of 3D object class reconstruction. Note,
however, that existing systems for structure and motion re-
covery, as well as recent NRSfM algorithmss[ 5, 12], all
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Figure 7. Comparison: An image (a) and its reconstructions = 1e 1 (less smooth) with xed (b) and variable (c) correspondence
are shown. Also for = 1 e4 (smoother) the xed (d, with self-intersections) and vat@(e) correspondence results are shown. Variable
correspondences consistently result in more plausibtEnstouctions.

eschew factorization in favour of nonlinear minimization [8] R. I. Hartley and A. Zisserman.Multiple View Geometry
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powerful tools available today. Energy-based reconstruction of 3D curves for quality con-

. . . . trol. In Proc. EMMCVPR2007.2
An important extension to this method is the use of other . . . )
bvi ) i it d surf text Wi [11] M. Prasad, A. Zisserman, and A. W. Fitzgibbon. Singksavi
Obvious iImage cues.g.siinouettes, and surface texture. Ve reconstruction of curved surfaces.Rmoc. CVPRvolume 2,
also hope to procure ground truth 3D exemplars for more pages 1345-1354, June 20067

comprehensive comparisons in the future. _ [12] V. Rabaud and S. Belongie. Re-thinking structure from m
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