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Abstract

An image search for “clown�sh” yields many photos of
clown�sh, each of a different individual of a different3D
shape in a different pose. Yet, to the human observer, this
set of images contains enough information to infer the un-
derlying 3D deformable object class. Our goal is to re-
cover such a deformable object class model directly from
unordered images.

For classes where feature-point correspondences can be
found, this is a straightforward extension of non-rigid fac-
torization, yielding a set of3D basis shapes to explain the
2D data. However, when each image is of a different ob-
ject instance, surface texture is generally unique to each
individual, and does not give rise to usable image point
correspondences. We overcome this sparsity using curve
correspondences (crease-edge silhouettes or class-speci�c
internal texture edges).

Even rigid contour reconstruction is dif�cult due to the
lack of reliable correspondences. We incorporate corre-
spondence variation into the optimization, thereby extend-
ing contour-based reconstruction techniques to deformable
object modelling. The notion of correspondence is extended
to include mappings between2D image curves and corre-
sponding parts of the desired3D object surface. Combined
with class-speci�c priors, our method enables effective de-
formable class reconstruction from unordered images, de-
spite signi�cant occlusion and the scarcity of shared2D
image features.

1. Introduction

Community photograph collections are a rich source of
information about the world, particularly when many dif-
ferent photos of the same subject are captured over time
and space. The Photosynth system [14] shows how several
views of the same rigid structure (e.g. “Pantheon”, “Half-
dome”) can be interrelated via the common coordinate sys-
tem of a 3D reconstruction. We would like to extend the
subject of such reconstructions beyond rigid structures to
include objectclasses: sets of 3D model instances drawn

Figure 1. Deformable shape models with4 bases for the `lily' and
`clown�sh' are recovered and �tted to some examples.

from some common distribution. Such classes occur of-
ten in nature,e.g. the class of oak leaves, or lily petals, or
dolphins. When each photo in the input collection is of a
different instanceof the object class, as might be returned
by a (e.g.Flickr) query on the tag “oak leaf”, each photo
corresponds to a different 3D shape.

In this paper, we address the novel problem of 3D ob-
ject classreconstruction from multiple, unordered images.
Fig. 1 shows images from two classes: “lily” and “clown-
�sh”, with the 3D models recovered from each by our
method. Speci�cally, we focus on a subset of such cat-
egories, namely objects for which a wireframe descrip-
tion is appropriate. In the absence of reliable point cor-
respondences, we exploit class-speci�c curve correspon-
dences. We extend existing optimization methods to in-
corporate variable correspondences and partial occlusion,
while matching such curves. We �rst recapitulate existing
work in § 2 before expanding on the problem in §3.

2. Related work

Related research comprises several strands: non-rigid
structure from motion, rigid 3D reconstruction from con-
tours, and the modelling of shape classes,e.g.using active
shape models.

2.1. Non­rigid structure from point matching

The recovery of non-rigid structure from motion has
been an ongoing subject of research [4, 3, 5, 16]. Common
to all these approaches, is the need for a set of point corre-



spondences, or point tracks in the case of video. The 3D
shape in each view is modeled as a linear combination of
basis shapes, denotedB1::K . The shape in each input view
is given by linear combination coef�cients� , possibly with
associated transformation parametersR; T . A set ofP point
correspondences overN input images is represented as a
2P � N measurement matrix, which concatenates the 2D
points wpn . Recovery of the unknown model parameters
� etc., was initially cast as a matrix factorization problem,
but more recent work has cast it as a maximuma-posteriori
(MAP) estimation of the parameters [5] or maximum likeli-
hood distribution �tting [16]. Rabaud and Belongie [12] is a
nice departure from the linear subspace model, but remains
in a regime where features are fully in correspondence.

These techniques are very effective in analyzing a sin-
gle object moving non-rigidly in video. However, apply-
ing these techniques to object class learning from commu-
nity photo collections incurs a number of dif�culties. First,
obtaining correspondences automatically is dif�cult with-
out the temporal coherence of video, or the matching ten-
sors of rigid-body multiple-view geometry [8]. Even if
manually-supplied matches are allowed, matches must be
found which are consistentacrossthe object class, not just
per-object. The type of surface texture found on natural
objects, such as �oral petals and faunal pelts, tends to be
unique to each object instance. This means that correspon-
dences between different instances, as required in this pa-
per, cannot be found. In practice, for the petal example we
use throughout this paper, perhaps two reliable point corre-
spondences may be identi�ed: the base and tip of the petal.

Bartoli et al. [1] is probably the closest prior work to
ours, in that they augment point-based Non-Rigid Structure
from Motion (NRSfM) with curve correspondences. Their
work, however, uses many more point correspondences to
guide the estimation, makes strong use of the temporal con-
straints in video, and does not deal with curve occlusions.

2.2. Rigid structure from curve matching

In the absence of surface correspondences, then, how
may the problem be approached? One solution is to move
from zero-dimensional point matching to one-dimensional
curve matching. The number of matched items remains
low—just three to eight reliable across-class curves for our
examples—but each curve correspondence provides much
richer information about 3D shape than a point correspon-
dence. The dif�culty with curve correspondences, however,
is a variant of the aperture problem: although the curve is in
correspondence as a whole, individual points on the curve
are not naturally in correspondence. Measures such as cur-
vature provide poor matching constraints, as curvature can
change drastically under projection (consider a smooth he-
lical segment which is imaged with a cusp). Projective con-
cepts such as bi-tangency do not extend to the deformable

case.
Existing work on curve matching uses the constraints as-

sociated with rigid-body assumption to constrain the match-
ing. Schmid and Zisserman [13] showed how the use of 2-
and 3-view matching tensors allows correspondence trans-
fer: a point on one curve which is not parallel to an epipolar
line, induces a point match on the corresponding curve in
a second view, and constrains the local matching homogra-
phy, allowing surface texture adjacent to the curve match to
resolve ambiguities. Rigid curve matching in multiple (> 3)
views is addressed by Berthilssonet al.[2], who introduce a
bundle adjustment strategy to allow curve correspondences
to vary along the image curves. Kaminski and Shashua [9]
derive constraints on algebraic curves from multiple views,
while Martinssonet al. [10] combine curve �tting and re-
construction for planar curves.

3. Multiple-view reconstruction of curve fami-
lies

This paper combines several of the above themes for ef-
fective recovery of deformable shape models from random
collections of images. Higher-level features such as image-
based curves are used and the process of joint optimization
over an analytic objective (using bundle adjustment [17])
includes the search for correspondences (in addition to the
basis shapes, camerasetc.). Instead of restricting ourselves
to 2D–2D correspondences, we also incorporate 2D–3D
correspondences, thus allowing for a large range of occlu-
sion. We exploit class-speci�c regularization and topologi-
cal information for effective reconstruction on two distinct
object classes.

We �rst de�ne the problem in §3.1. The general goal
(§3.2) and an overview of the optimization method (§4) are
described next. The speci�c objective, regularization and
optimization change depending on the speci�c application.
Variations of the basic method are applied to two classes in
§5: “Lily” (§ 5.1) and “Clown�sh” (§5.2). We then sum-
marize our contributions (§6) and discuss shortcomings and
future directions.

3.1. Problem statement

We haveN images, each a different instance of an ob-
ject class, and the goal is: (i) to extract a deformable shape
model, (ii) �nd the camera projection parameters, and (iii)
�t the shape model to each image. Each image is of a dif-
ferent class instance, therefore identi�cation of point cor-
respondences is often impossible. However, image con-
tours of characteristic texture edges and silhouettes suc-
cinctly capture the image-based information for the task
of building a deformable shape model. In each imagen,
a different numberf n of unique 2D curves can be easily
extracted as illustrated in �g.3 (a). Each curve is rep-
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resented analytically as a piecewise-smooth, spline-based
function ! ni (t); t 2 [0; 1]; i 2 1: : : f n mapping the uni-
dimensional spline parametert, [0; 1] ! R2 to the image
locations (�g. 2).

We use a parametric 3D

� ���
� � �

� �� � � �
� � �

Figure 2. Sub-pixel edgel chains
are represented by piecewise-
smooth spline functions; creat-
ing continuous contours. Foru 2
f 1 : : : Ug ; v 2 f 1 : : : V g ; i 2
f 1 : : : f n g ; t 2 [0; 1].

surface representation for
the 3D shapes,i.e. a map-
ping from (u; v) parame-
ter space to 3D, denoted
X (u; v). Each image-
based 2D curve! ni (t)
is also a projection of
some 3D curve on the
object surface, which is
in turn represented by
a 2D curve (u(t); v(t))
in the surface's parame-
ter space, which we call
the pre-image. Provided
these curves are not too
close in parameter space,
we may reparametrize so
that the pre-images are

lines. Thus there is a mapping:t 2 [0; 1] $
line[(uni 1; vni 1); (uni 2; vni 2)], between the 2D image
curve parameter and the 3D curve parameter (see �g.3).
In this work,! ni constitutes the entire, usable image infor-
mation. Thus, the setf ! ni (t)ji 2 f 1 : : : f n gg and their 3D
counterparts form the “visible” part of the object surface in
imagen. For the 2D parametric surface de�ned in the next
section, this mapping de�nes the visibility of a surface ver-
tex (p; q) in each imagen as:

 npq =

(
i if (p; q) 2 line[(uni 1; uni 2) ; (vni 1; vni 2)]
0 otherwise

or, in other words: npq is the index of the curve in imagen
to which parameter-space point(p; q) maps.

Surface representation: The parametric surface repre-
sentation mapping[0; 1]2 7! R3 is used to represent fully
freeform shape instances. The 3D model for thenth im-
age is represented on a discretized parametric grid as a
U � V vertex mesh,X nuv = [ X nuv ; Ynuv ; Znuv ]> , u 2
f 1 : : : Ug; v 2 f 1: : : Vg. (see �g. 3). The model for
the 3D deformable object class follows the literature, and
is a linear combination of a setB of K basis shapes; the
(u; v) th vertex in thekth basis given by:f B kuv gK

k=1 . B
is �tted to each image by a vector of shape parameters
� n to retrieve the relevant 3D model vertices given by:
Xnuv =

P K
k=1 � nk : Bkuv . We adopt the convention that

� n 1 = 1 ; 8n, so thatB1 behaves like the mean in principal
components analysis. The model is projected into the image

via a 3 � 4 camera matrix:Pn = [ An j T n ] and perspec-
tive projection� (x; y; z) := ( x=z; y=z) gives us the current
predicted projectionŝwn (u; v):

ŵnuv
2� 1

= �

 

An

KX

k=1

� nk � B kuv
3� 1

+ T n
3� 1

!

(1)

3.2. Desiderata

The goal is to recover the unknowns� =
f � 1::N ; B1::K ; P1::N g. For any solution it is important
for the individual reprojections to be consistent with
information from the corresponding images. For under-
constrained problems appropriate regularization encourages
the reconstructionsXn to have desired characteristics of
class shapee.g. smoothness and topology. To this end,
we will minimize a sum of reprojection error (ERP) and
regularization (Esmooth) in the combined objective

Egen = ERP + Esmooth: (2)

3.3. Reprojection error

The projection̂Wn of thenth 3D modelXn must be con-
sistent with its image observations. If the corresponding im-
age projectionwnuv for eachX nuv were known, the model
�t could be assessed by measuring reprojection error:

ERP =
X

n;u;v

kenuv
2� 1

k2 =
X

nuv

( nuv > 0) �








 ŵnuv

2� 1
� wnuv

2� 1










2

(3)

Fitting the model by minimizingEgen is then a straightfor-
ward bundle adjustment over� = f � 1::N ; B1::K ; P1::N g.
However we lack point correspondences, so the closest-
point from a projected point to a image-based curve rep-
resents the “correspondence” and the modi�ed reprojection
error is:

dnuv (t) = ( ŵnuv � ! n; nuv (t)) : ( nuv > 0) (4)

D =
X

n;u;v

kdmin
nuv k2 (5)

dmin
nuv = min

t
kdnuv (t)k (6)

This small modi�cation makes the optimization rather more
dif�cult. Several options are available to minimizeD, and
these are the topic of the next section.

Minimizing D: In our experiments, a number of strate-
gies for minimization ofD were considered: (i) distance
transform, (ii) point-to-spline distance, and (iii) augmented
bundle adjustment. The distance transform approach main-
tains a distance look up table (and associated derivatives as
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Figure 3. Annotation and parametrization: (a) Image and
their prominent curve features. (b) Mapping between im-
age curves and parameter grid. For lilies, this is constant
f (u; v)ju 2 [0; 1]; v 2 f 0; 0:5; 1gg. Row1: The gray vertices are
interpolated from the ribs post-optimization. For clown�sh, the
curves are intuitively and approximately mapped to the cylindrical
�sh topology (also see �g.2). Rows2; 3: Black vertices are the
invisible (or occluded) verticesw.r.t. the image curve information
of (a) and are solved simultaneously with the coloured ones.Note:
The image curves are unique to each instance and identically-
coloured curves correspond only along the columns and not across
rows. (d) Cylindrical topology for �sh parametrization. (e) For
each vertex, the brightness corresponds to the number of images it
is visible in. Only two(u; v) = f (2; 6); (3; 6)g are visible8N .

in [6]): DTni (x) = min t kx � ! ni (t)k. This gives the sim-
pli�cation

dmin
nuv = (  nuv > 0) � DTn; nuv (ŵnuv ) : (7)

Discretization is a problem on distance transforms. To in-
crease accuracy, we can discretize more �nely (by a factor
of 5), but this leads to memory constraints on the number
of images we can train on. The advantage of this look-up
based approach is that it works very fast.

Because the image curves are de�ned as interpolating
splines, the closest point to any query point can be ef-
�ciently and reliably found using Newton-Raphson itera-
tions. If we assume each 3D point is determined by its
projections, then (6) can be explicitly minimized at each
function evaluation. However, the derivatives of the func-
tion are not available in closed-form, so �nite-differenceap-
proximations must be used, and bundle adjustment becomes
considerably slower.

The third strategy is to augment the bundle adjustment
with NUV extra parameterstN (u; v), i.e. rewriting

DRP = min
�

X

nuv

min
t

dnuv (t) = min
� ;t 1 (u;v ) ::t N (u;v )

X

nuv

dnuv (t):

(8)
Eachtn (u; v) represents the closest curve-point to each vis-
ible ŵn (u; v) and addsNUV parameters (assuming all ver-
tices are visible) to the optimization to explicitly represent
the correspondences. This redundancy removes the need
for explicit closest point computations. However, it does
not greatly increase the computational load because the ad-
ditional parameters add a large sparse block (of tightly con-
strained variables) to the Jacobian. In our experiments, the
additional block does not add any report-worthy time to Ja-
cobian calculation.

3.4. Regularization

In the presence of sparse training data with occlusion and
noise, regularizers on the 3D shape are required. EachXn

(also written as the3UV � 1 vector ~X n ) must be smooth
regardless of which vertices are visible, and possess desir-
able class characteristics for plausible reconstruction.Thin-
plate energies (see [15, 18, 7]) associated with �rst (ten-
sion) and second (bending energy) derivatives and their
corresponding matrix operators:Cu ; Cv ; Cuu ; Cuv ; Cvv (each
3UV square matrix as shown in [11]) are de�ned ignoring
parametrization issues:

Ebending=
X

n

ken
bendingk2 (9)

en
bending

9UV � 1

= � �
�
~X >

n uu

p
2~X >

n uv
~X >

n vv

� >
(10)

E tension=
X

n

ken
tensionk

2 (11)

en
tension

9UV � 1
= � �

�
~X >

n u
~X >

n v

� >
(12)

4



Esmooth= Ebending+ E tension (13)

X n u
3� 1

(i; j ) =
1

2U

�
X n ( i +1) j � X n ( i � 1) j

�
(14)

X n uu
3� 1

(i; j ) =
1

4U2

�
X n ( i +1) j � 2X nij + X n ( i � 1) j

�

(15)

and, Xn uu
3UV � 1

= Cuu
3UV � 3UV

~X n
3UV � 1

; jjj ly for others (16)

4. Hierarchical Optimization

Given a dataset of images and curves, computing a so-
lution for the deformable object problem involves an op-
timization over a sum-of-squares objective of type (2),
which can expressed as a residual vector. The Levenberg-
Marquardt algorithm is used with an analytically computed
Jacobian. Fig.4 illustrates the main sparsity structure that
is exploited in our experiments. We divide the matrix into
its major blocks, many of which are block-structured, and
process those blocks in “tetris mode”,i.e. ef�ciently com-
pute and compactly store the blocks in column-wise order
in a �attened matrix, increasing the optimization speed and
accuracy. For under-constrained non-convex problems the
key to a good solution is the choice of initialization. We
reduce the dependency by having an hierarchical minimiza-
tion strategy with incremental model complexity. Relatively
reliable solutions can be found for simpler cases (e.g.rigid
body i.e. K = 1 , scaled-orthographic projection). This we
relax towards the full solution by varyingK from 1 to the
desired target, and for eachK , we �rst estimate the newly
introduced bases and coef�cients before proceeding to fully
joint optimization (including correspondencestnp ).

5. Experiments

For the NRSfM unknowns given by� (§ 3.2), we
compare our variable correspondence based optimization:
min f �;t nuv g Egen against NRSfM with �xed correspon-
dences: min � Egen (see (2)). We examine two classes:
`lilies' and `clown�sh'. Curve-based image evidence is em-
ployed to optimize similar objectives under different surface
representations, class-based priors and varying amounts of
occlusion. Class-speci�c curves are identi�ed by �rst run-
ning a sub-pixel edge detector and edgel linker, and then
manually selecting the corresponding edges. This is a rel-
atively quick process, requiring a few clicks per image, but
for a situation where thousands of images were to be la-
belled, partial automation would be desirable. While the op-
timization (and our implementation) handles any projection
model, in the following experiments we use a 7-parameter
similarity transform (un-normalized quaternion and transla-
tion).

5.1. Lilies

In the �rst class: `lily', the open petal surface is assumed
to be completely determined from the three “ribs” on the
petal surface. We call this the “Wireframe Class Model”
(WCM). Therefore the surface is reduced to a set of ribs—
its underlying `wireframe' representation—i.e. u 2 [1; U]
but nowv 2 f 1; 2; V g; V = 3 (for 3 petal ribs). Given
the de�ning ribs, the rest of the surface is interpolated as
shown in �gs. 1,5,6. The notion of surface smoothness
(§3.4) reduces to rib-based 3D curve smoothness. Com-
puting second-order rib smoothness is equivalent to using
only matrix operatorCuu on the individual ribsX n (u; v).
The horizontal (Cvv ) and diagonal (Cuv) smoothness terms
are irrelevant across the ribs and are turned off (the ribs are
not spatially next to each other on the surface, therefore are
not expected to be smooth horizontally and diagonally on
the parameter space). In addition to smoothness, vertices
on the individual ribs must be as uniformly spaced as possi-
ble while adhering to image-based information. The tension
termCu is useful in this context. The �nal

en
bending= �C uu

~X n (17)

en
tension= �C u ~X n (18)

Smoothness in the above form (especially tension) can
cause the ribs to shrink to singular points. Stated as in
(2), a global optimum of the objective can be found by
settingBk = 0 for all k, and choosingPn to project the
resulting point onto any point on the image curve,e.g.
wn (0; 0). The �rst problem is reduced if point corre-
spondences are available. In our example, the tip and
base of the petal are identi�able in many views, and can
be included as conventional point constraints. However,
image-based observation noise and annotation noise makes
such constraints undesirable. A weaker, but nevertheless
useful constraint is to encourage certain points on the
curves to be coincident in 3D. This allows for the 3D rib
tips to continue to be �exible and optimizable, promoting
petal-like appearance, removing occurrence of singularity
without explicit constraints. For example, given the point
labelling in �gs. 2,3, we add the following terms to the
optimization:

Ept =
X

n

� top
�
kX n 11 � X n 12 k2 + kX n 11 � X n 13 k2 �

+ � bot
�
kX nU 1 � X nU 2k2 + kX nU 1 � X nU 3k2 �

(19)

Combining these terms gives our primary objective:

E wcm(� ; t11; :::; tnp ) = DRP+ Ept+ Ebending+ E tension (20)

Observations: A collection of N = 56 “lily” (petal)
photos were downloaded from Flickr, and manually an-
notated as described above, to produce a three-rib curve
for each view. Optimizing (8) with �xed tn (u; v) and
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(a) Lily (b) Clown�sh
J (for a) � (NK ) B (3KP ) � (7N ) T (NP )

d 2P NK 6P NK 14NP 2NP

ebending 3P NK � 9P NK 0 0

etension 3P NK � 9P NK 0 0

ept 12P NK 72NK 0 0
Figure 4. Jacobian structure: (a) `Lily': the variables (for
(N = 4 ; K = 3 ; UV = 12) ) are plotted horizontally while the
terms from the residual ofE wcm are vertical. The densities of the
blocks for (a) are shown in the matrix below. (b) Clown�sh: Ja-
cobian for(N = 4 ; K = 3 ; UV = 100) is on the right. Now, the
vertical blocks toD; ebending (Blocks for ept; etension removed, but
ebending is larger due to surface-based smoothness). Additionally,a
number of rows in (b) may be empty due to occluded vertices.

U = 20 unit-speed samples per rib (� V = 3 ribs) is
equivalent to a regularized version of NRSfM, and produces
rather �at reconstructions (see �g.5). For N = 56 im-
ages,UV = 60 and K = 4 , the number of parameters
= NK + UV K3+7N = 1336. Allowing for variable cor-
respondences addsNUV = 3360 redundant variables, to-
talling to4696. The Jacobian and its sparsity pattern can be
seen in �g.4 (a). The hyper-parametersf �; �; � g in this op-
timization are set empirically by visual reconstruction qual-
ity and requires little tuning in our experience; our WCM
produces realistic 3D models regardless of the exact value
of these hyper-parameters (unless scaled exorbitantly). Re-
sults are summed up in table1 and �gs.3,5.

5.2. Clown�sh

We now consider a new case: “clown�sh”, adopting a
slightly different approach from the WCM of §5.1. Instead,
we solve for the entireU � V mesh as proposed in §3.1.
Only a part of the clown�sh surface corresponding to the
observed image curves, is seen in each image. In addition to
curve annotation, the user initializes approximate mapping

m 2 0

 

 

 

 

 

 

 

 

Figure 5.WCM: Row1: Three lily images and annotations. Row
2: 3D wireframes (and interpolated petal surfaces) estimated by
our WCM method (K = 4 ) using �exible correspondences are
much more realistic. Our ribs are projected to Row1 in red. Row
3: Our best results for standard NRSfM techniques, which pro-
duces mostly �at petals. Note: surface colour ranges from blue to
red denoting vertex depth for visualization.

B1 B2 variation B3 variation B4 variation
Figure 6.Lily: Modes of deformation. The bases are wireframe;
surfaces are interpolated for ease of understanding.

of each curve to its parametric locations during the anno-
tation (see �g.3). This mapping only needs to be approx-
imately correct for each curve, but the collective, relative
ordering of all mappings on the surface must be reasonably
correct. For the moment, we ignore the complex side �n
to keep the topology simple at the current resolution. Since
the observed data is limited to image-based curves, object
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parts corresponding to texture-less and non-silhouette re-
gions are invisible to the method and considered “occluded”
in that image. The individual vertex visibilities (see �g.3)
are important to the optimization. Reprojection error con-
tinues as (8). The clown�sh is represented as a closed sur-
face mesh(U = 10; V = 10) of cylindrical topology (see
�g. 3). The regularization matrices are designed to incor-
porate the bending energy (9) and the topology [11]. The
lily-speci�c Ept (19) is removed. To deal with the whole
surface, all terms of (9) are used as opposed to (17). Then
the full objective is:

E full (� ; t11; :::; tnp ) = DRP + Ebending (21)

Observations: A dataset ofN = 20 images is collected
off the web and annotated as described above (also see
§ 5). The number of vertices represented by each! ni is
determined by their 3D parametric mapping. Optimizing
(21) with �xed, unit-speedtnuv yields the NRSfM solution,
while allowing the correspondences to vary in (21) extends
the method to �nd variable correspondences. For,N = 20
images,UV = 100, andK = 4 the number of parame-
ters= NK + UV K3 + 7N = 1420. Interestingly, only
169 points of NUV = 2000 are ever visible; only2 are
seen in every image (see �g.3 (e)). Allowing for variable
correspondences addsNUV = 2000 additional redundant
variables, totalling to3420(see Jacobian in �g.4 (b)). Us-
ing bundle adjustment, the bases are built incrementally and
separately for �xed and variable correspondences. This re-

K NRSfM Ours
ERP RMSE ERP RMSE

E = E wcm Lily: N = 56 ; P = 60 ,� = 1e � 2
1 12.16 0.4247 10.59 3.6974
2 9.22 0.3219 8.99 0.31
3 7.56 0.26 7.19 0.25
4 5.57 0.19 5.38 0.18

E = E full Clown�sh: � = 1e4
1 4.9307 1.5671 4.9307 1.5671
2 3.4412 1.1527 3.8123 1.2632
3 2.2969 0.8271 2.7730 0.9834

Clown�sh: � = 1e � 1
1 5.0982 1.6469 4.0107 1.3415
2 2.8267 0.8540 3.0968 1.1058
3 1.7469 0.5278 2.3942 0.9203

Table 1. Results for the competing methods: (i)Lily : The WCM
method achieves a better minimum. Additionally, it optimizes re-
projection error (reported per point) better too. (ii)Clown�sh:
Data being limited, our algorithm performs better (in termsof
function value) at low regularization and low number of bases
(K = 1 ). Despite higher function values at higher K, the vi-
sual reconstructions obtained by our method are more realistic (see
�g. 7).

sults in separate solutions with comparable function values
as seen in table1. At low � (1e� 1, weight on smoothness)
and low bases (K = 1 here), variable correspondences pro-
duce improved 3D models and reduceERP and E full . At
higher� (1e4) smoothness overtakes reprojection error. Nu-
merically, NRSfM and our method produce similar results
(see table1), though visually our results continue to look
better (see �g.7).

6. Summary

We have shown how a single bundle adjustment frame-
work, built around curve features, allows a variety of 3D
reconstruction from collections of similar, but distinct class
instances despite the lack of point correspondences or tem-
poral smoothness.

We �rst apply our method to �nd lily petal structure ap-
proximated by a rib-based wireframe. Image-curves rep-
resenting rib projections are used to jointly estimate corre-
spondences (up to a local minimum) along with the standard
NRSfM variables. All vertices of the object are observable
in a reasonably large dataset and we show signi�cant im-
provement over existing techniques.

We then extend the method for “clown�sh”—a
topologically-cylindrical class—from partial image curve-
based cues. While allowing for occlusion of unseen vertices
in each image, correspondences are still jointly learnt with
the rest of the variables. This is particularly interestingbe-
cause in each image, most vertices happen to be invisible
(�g. 3); those observed are often the same vertices. The re-
sults provide a captivating teaser for how far such methods
can be pushed in the face of extreme occlusion and limited
data.

When solved separately and incrementally (as described
in § 4), the two competing methods–the �xed correspon-
dence NRSfM and our variable correspondence based ap-
proach (usingE wcm; E full )–can land in different local op-
tima of the complex objective function. Our optimiza-
tion generally leads to more plausible optima than NRSfM,
when both are initialized identically (barring in�ection
points). We lack ground truth to train and test these al-
gorithms. Therefore, observation and annotation noise, in-
herent ambiguity in solutions, initialization issues and error
in model assumptions affect the exact function value at the
local optimum. Therefore, in addition to objective value,
visual plausibility is an important benchmark in evaluating
the �nal reconstructions.

In this paper, we have approached 3D deformable class
reconstruction from a fresh perspective. We have not pro-
vided a closed-form, or factorization-based, algorithm, but
rather used a carefully controlled bundle adjustment to
prove the concept of 3D object class reconstruction. Note,
however, that existing systems for structure and motion re-
covery, as well as recent NRSfM algorithms [16, 5, 12], all
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(a) (b) (c) (d) (e)
Figure 7. Comparison: An image (a) and its reconstructions for � = 1 e � 1 (less smooth) with �xed (b) and variable (c) correspondences
are shown. Also for� = 1 e4 (smoother) the �xed (d, with self-intersections) and variable (e) correspondence results are shown. Variable
correspondences consistently result in more plausible reconstructions.

eschew factorization in favour of nonlinear minimization
(whether expectation maximization or second-order meth-
ods), or of more realistic statistical or projection models.
We hope that in the future, clever initializations will be
found for these methods, but at this stage, we consider it
valuable to have posed and examined the problem using the
powerful tools available today.

An important extension to this method is the use of other
obvious image cuese.g.silhouettes, and surface texture. We
also hope to procure ground truth 3D exemplars for more
comprehensive comparisons in the future.
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